XSUSY

A multipurpose program for calculations in SUSY models with non-minimal flavour violation

Benjamin Fuks (LPSC Grenoble)

In collaboration with Giuseppe Bozzi, Björn Herrmann and Michael Klasen

GDR SUSY - Common Tools & Methods working group meeting Marseille (France)

September 17, 2007

Outline

- SUSY models with non-minimal flavour violation
 - Constrained minimal flavour violation
 - Non-minimal flavour violation (NMFV)
 - Tools needed for a complete NMFV study
 - Description of XSUSY
 - The XSUSY approach
 - The XSUSY core: cross sections and decay widths
- 3 Examples
 - Simplified NMFV scenario
 - Parameter space analysis
 - Flavour structure analysis
 - Production cross sections
 - Decay widths
- 4 Summary and outlook

Outline

NMFV

- SUSY models with non-minimal flavour violation
 - Constrained minimal flavour violation
 - Non-minimal flavour violation (NMFV)
 - Tools needed for a complete NMFV study
- - The XSUSY approach
 - The XSUSY core: cross sections and decay widths
- - Simplified NMFV scenario
 - Parameter space analysis
 - Flavour structure analysis
 - Production cross sections
 - Decay widths

[Ciuchini, Degrassi, Gambino, Giudice (1998)]

NMFV

Squared sfermion mass matrices:

$$M_{\tilde{F}}^2 = \begin{pmatrix} M_{LL,1}^2 & 0 & 0 & m_1 \, m_{LR,1} & 0 & 0 \\ 0 & M_{LL,2}^2 & 0 & 0 & m_2 \, m_{LR,2} & 0 \\ 0 & 0 & M_{LL,3}^2 & 0 & 0 & m_3 \, m_{LR,3} \\ m_1 \, m_{RL,1} & 0 & 0 & M_{RR,1}^2 & 0 & 0 \\ 0 & m_2 \, m_{RL,2} & 0 & 0 & M_{RR,2}^2 & 0 \\ 0 & 0 & m_3 \, m_{RL,3} & 0 & 0 & M_{RR,3}^2 \end{pmatrix}$$

- * All flavour-violating elements of $M_{\tilde{\epsilon}}^2$ are zero.
- * Sfermion mixing: $(\tilde{f}_L, \tilde{f}_R) \Rightarrow (\tilde{f}_1, \tilde{f}_2)$ with flavour conservation.
- * Small first- and second-generation fermion masses: $m_1, m_2 \rightarrow 0$.
- * Three flavour-conserving mixing angles, $\theta_{\tilde{t}}$, $\theta_{\tilde{b}}$ and $\theta_{\tilde{\tau}}$.
- Squark sector
 - * Flavour violation is governed by the CKM matrix, within the interactions.
 - * e.g. chargino-squark-quark vertex proportional to V_{qq^\prime} .

• The squared squark mass matrices are

$$M_{\tilde{Q}}^2 = \begin{pmatrix} M_{LL,1}^2 & \Delta_{LL}^{12} & \Delta_{LL}^{13} & m_1 \, m_{LR,1} & \Delta_{LR}^{12} & \Delta_{LR}^{13} \\ \Delta_{LL}^{21} & M_{LL,2}^2 & \Delta_{LL}^{23} & \Delta_{RL}^{21} & m_2 \, m_{LR,2} & \Delta_{LR}^{23} \\ \Delta_{LL}^{31} & \Delta_{LL}^{32} & M_{LL,3}^2 & \Delta_{RL}^{31} & \Delta_{RL}^{32} & m_3 \, m_{LR,3} \\ m_1 \, m_{RL,1} & \Delta_{RL}^{12} & \Delta_{RL}^{12} & \Delta_{RL}^{13} & M_{RR,1}^2 & \Delta_{RR}^{12} & \Delta_{RR}^{13} \\ \Delta_{LR}^{21} & m_2 \, m_{RL,2} & \Delta_{RL}^{23} & \Delta_{RR}^{21} & M_{RR,2}^2 & \Delta_{RR}^{23} \\ \Delta_{LR}^{31} & \Delta_{LR}^{32} & m_3 \, m_{RL,3} & \Delta_{RR}^{31} & \Delta_{RR}^{32} & M_{RR,3}^{2} \end{pmatrix} \,. \label{eq:MQ}$$

* The off-diagonal elements are 24 new free parameters, parameterized by

$$\Delta_{ij}^{qq'} = \lambda_{ij}^{qq'} M_{ii,q} M_{jj,q'}.$$

- * Diagonalization through 6×6 rotation matrices R^u and R^d .
- Physical eigenstates given by

$$\begin{array}{lll} (\tilde{u}_{1}, \tilde{u}_{2}, \tilde{u}_{3}, \tilde{u}_{4}, \tilde{u}_{5}, \tilde{u}_{6})^{T} & = & R^{u}(\tilde{u}_{L}, \tilde{c}_{L}, \tilde{t}_{L}, \tilde{u}_{R}, \tilde{c}_{R}, \tilde{t}_{R})^{T}, \\ (\tilde{d}_{1}, \tilde{d}_{2}, \tilde{d}_{3}, \tilde{d}_{4}, \tilde{d}_{5}, \tilde{d}_{6})^{T} & = & R^{d}(\tilde{d}_{L}, \tilde{s}_{L}, \tilde{b}_{L}, \tilde{d}_{R}, \tilde{s}_{R}, \tilde{b}_{R})^{T}. \end{array}$$

Constraints on non-minimal flavour violation

Scaling of the off-diagonal terms with the SUSY-breaking scale:

$$\Delta_{LL}\gg\Delta_{LR,RL}\gg\Delta_{RR}$$

[Gabbiani, Masiero (1989)]

- FCNC: upper limits on λ 's.
 - * Neutral kaon sector $(\Delta m_K, \varepsilon, \varepsilon'/\varepsilon)$
 - B-meson oscillations,
 - * D-meson oscillations (Δm_D) ,
 - * Rare decays (BR($b \to s \gamma$), BR($\mu \to e \gamma$), BR($\tau \to e \gamma$), BR($\tau \to \mu \gamma$)),
 - * Electric dipole moments $(d_n \text{ and } d_e)$.

```
[Gabbiani, Gabrielli, Masiero, Silvestrini (1996)]
[Ciuchini, Masiero, Paradisi, Silvestrini, Vempati, Vives (2007)]
```

- Cosmological constraints:
 - * color singlet and electrically neutral LSP [Ellis et al. (1984)]
 - * Dark matter relic density
 (WMAP, SDSS, SNLS, and Baryon Acoustic Oscillations data)
 [Hamann, Hannestad, Sloth, Wong (2007)]

Inputs

NMFV

- * SM parameters.
- * Reduced number of SUSY parameters at GUT scale.
- * NMFV parameters at low-energy scale.

Outputs:

- * Are NMFV SUSY models experimentally viable?
 - ⇒ Analysis of the allowed parameter space.
- * What is the flavour content of the physical particles?
 - ⇒ Analysis of the flavour structure in the squark sector.
- * Are hadron colliders sensible to NMFV?
 - ⇒ Dependence of the production cross sections on flavour violation.
 - ⇒ Dependence of the decay widths on flavour violation.

NMFV

- From GUT scale to EW scale
 - * Solution to the renormalization group equations.
 - * SPheno 2.2.3 [Porod (2003)], SuSpect 2.34 [Djouadi, Kneur, Moultaka (2007)],... (only constrained Minimal Flavour Violation (cMFV) scenarios.)
- Introduction of NMFV at low energy:
 - * Generalized squark mass matrices, SUSY spectrum and mixing matrices.
 - * FeynHiggs 2.5.1. [Heinemeyer, Hollik, Weiglein (2000)].
- Constraints:
 - * Low energy and EW constraints in cMFV: FeynHiggs, SPheno, SuSpect.
 - * Low energy and EW constraints in NMFV: FeynHiggs.
 - * Dark matter relic density in cMFV: DarkSUSY 4.1 [Gondolo et al. (2004)]....
- Missing pieces:
 - Dark matter relic density in NMFV.
 - Production cross sections.
 - * Decays widths.

Outline

- - Constrained minimal flavour violation
 - Non-minimal flavour violation (NMFV)
 - Tools needed for a complete NMFV study
 - Description of XSUSY
 - The XSUSY approach
 - The XSUSY core: cross sections and decay widths
- - Simplified NMFV scenario
 - Parameter space analysis
 - Flavour structure analysis
 - Production cross sections
 - Decay widths

The XSUSY approach

Current version: XSUSY 1.8.0 [BF, in preparation]

- Evolution from the GUT scale to the EW scale in cMFV:
 - * SPheno or SuSpect.
- SUSY spectrum and mixing matrices:
 - FeynHiggs (NMFV).
 - * FeynHiggs, SPheno or SuSpect (cMFV).
- Low-energy and electroweak constraints:
 - FeynHiggs (NMFV and cMFV).
- Dark matter relic density (NMFV and cMFV):
 - Modified DarkSUSY.
- Production cross sections and decay widths:
 - * Own XSUSY core (NMFV and cMFV).

Scheme of the program

XSUSY

000000

NMFV couplings

- Flavour violating couplings: $\tilde{q} q \tilde{\chi}$, $\tilde{q} q \tilde{g}$, $\tilde{q} q \phi$, and $\tilde{q} \tilde{q} V$.
- Example 1: squark-quark-gluino coupling

- * MSSM: non zero coupling \Leftrightarrow same squark and quark flavour, \Leftrightarrow proportional to $\cos \theta_{\tilde{a}}$, $\sin \theta_{\tilde{a}}$.
- * NMFV SUSY: \Leftrightarrow proportional to R_{ik}^q , $R_{i(k+3)}^q$.
- Example 2: squark-quark-chargino coupling

* Sum over the squark flavour content,

$$L_{\bar{u}_j d_k \bar{\chi}_i^{\pm}} = \sum_{l=1}^{3} \left[V_{i1}^* R_{jl}^{u} - \frac{m_{u_l} V_{i2}^* R_{j(l+3)}^{u}}{\sqrt{2} m_W \sin \beta} \right] V_{u_l d_k},$$

$$-R^*_{\bar{u}_j d_k \tilde{\chi}_i^{\pm}} = \sum_{l=1}^{3} \frac{m_{d_k} U_{i2}^* V_{u_l d_k}^* R_{jl}^{u*}}{\sqrt{2} m_W \cos \beta} .$$

Squark-antisquark pair production

XSUSY

0000000

* Neutral current

* Charged current

- * All LO QCD and EW diagrams.
- * Remark: gluon-squark-squark vertex is flavour conserving.
- * Compact expressions for cross sections ⇒ form factors.

- Squark-squark pair production
 - Same isospin (two up- or two down-type squarks)

Different isospin (one up-type and one down-type squark)

- * Possible heavy flavour production with light flavours in the initial state.
- Large quark-quark luminosity at the LHC.

Cross sections (3)

Associated gaugino-squark production

- * Semi-weak process plus light gaugino \Rightarrow rather large cross sections.
- * Flavour violating effects at the weak vertices.
- Gaugino pair production

* Sum over all squark mass-eigenstates \Rightarrow reduced flavour violating effects.

2-body decay widths

Squark decays

Gaugino decays

Gluino decays

Outline

- - Constrained minimal flavour violation
 - Non-minimal flavour violation (NMFV)
 - Tools needed for a complete NMFV study
 - - The XSUSY approach
 - The XSUSY core: cross sections and decay widths
- Examples
 - Simplified NMFV scenario
 - Parameter space analysis
 - Flavour structure analysis
 - Production cross sections
 - Decay widths

Simplified NMFV scenario

• The squared squark mass matrices are approximated

$$M_{\tilde{Q}}^2 = \begin{pmatrix} M_{LL,1}^2 & 0 & 0 & m_1 \, m_{LR,1} & 0 & 0 \\ 0 & M_{LL,2}^2 & \lambda M_{LL,2} M_{LL,3} & 0 & m_2 \, m_{LR,2} & 0 \\ 0 & \lambda M_{LL,2} M_{LL,3} & M_{LL,3}^2 & 0 & 0 & m_3 \, m_{LR,3} \\ m_1 \, m_{RL,1} & 0 & 0 & M_{RR,1}^2 & 0 & 0 \\ 0 & m_2 \, m_{RL,2} & 0 & 0 & M_{RR,2}^2 & 0 \\ 0 & 0 & m_3 \, m_{RL,3} & 0 & 0 & M_{RR,3}^2 \end{pmatrix} \,.$$

- One single parameter $\lambda \leq 0.1$ (both for up-type and down-type sectors).
- Satisfy constraints from FCNC.

mSUGRA parameter space analysis (1)

- ullet $aneta=10, \mu>0, A_0=0$ GeV, $0\leq\lambda\leq0.1$. [Bozzi, BF, Herrmann, Klasen (2007)]
- Region favoured by a_{μ} @2 σ (grey)
 - * $a_{\mu}^{\rm SUSY} = (22 \pm 10) \times 10^{-10}$ (BNL data vs SM) [PDG (2006)].
 - * Squarks contribute at the two-loop level only.

 ⇒ Reduced squark vs. slepton one-loop contributions.
- Region excluded by $b \rightarrow s\gamma$ @2 σ (blue)
 - * BR($b \to s\gamma$) = (3.55 ± 0.26) × 10⁻⁴ [Barbiero *et al.* (2006)].
 - * NMFV contributes at the one-loop level (same as the SM contributions). \Rightarrow Very sensitive to λ .
- Region excluded by $\Delta \rho$ @2 σ (not shown)
 - * $\Delta
 ho = 0.00102 \pm 0.00086$ (fits of EWPO) [PDG (2006)].
 - * Sensitive to squark mass splitting [Veltman (1977)], influence on m_W , $\sin^2 \theta_W$.
 - * Very heavy scalar and gaugino masses excluded.

mSUGRA parameter space analysis (2)

- ullet $aneta=10, \mu>0, A_0=0$ GeV, $0\leq\lambda\leq0.1$. [Bozzi, BF, Herrmann, Klasen (2007)]
- Charged LSP (beige)
 - * DM candidate \Leftrightarrow Color singlet and electrically neutral [Ellis et al. (1984)].
- Region favoured by Ω_{CDM} (black)
 - * 0.094 $< \Omega_{CDM} h^2 < 0.136$ [Hamann, Hannestad, Sloth, Wong (2007)] (WMAP, SDSS, SNLS, Baryon Acoustic Oscillations).
 - * Not really sensitive to λ (many involved processes).

GMSB parameter space analysis

- ullet $aneta=15, \mu>0, N_{
 m mes}=3, 0\leq\lambda\leq0.1.$ [BF, Herrmann, Klasen (in prep.)]
- Region excluded by $b \rightarrow s\gamma$ @2 σ (blue)
 - * BR($b \to s\gamma$) = (3.55 ± 0.26) × 10⁻⁴ [Barbiero *et al.* (2006)].
 - * NMFV contributes at the one-loop level (same as the SM contributions). ⇒ Very sensitive to λ.
 - * cMFV scenarios excluded, but windows open at large λ .
- Region favoured by a_{μ} @2 σ (green)
 - * $a_{\mu}^{SUSY} = (22 \pm 10) \times 10^{-10}$ (BNL data vs SM) [PDG (2006)].
 - * Squarks contribute at the two-loop level only.

 ⇒ Reduced squark vs. slepton one-loop contributions.

Benchmark point BFHK-B: flavour content

- Hermitian squark mass matrices depend continuously on the single parameter λ .
 - * The eigenvalues do not cross ⇒ avoided crossings.
 - * Exchange of the flavour content between the concerned eigenstates.
- \bullet Large mixing between $2^{\rm nd}$ and $3^{\rm rd}$ generations, even for small $\lambda.$

BFHK-B: neutral current squark-antisquark pair production

[Bozzi, BF, Herrmann, Klasen (2007)]

Diagonal pairs:

- Gluon-fusion initiated diagrams.
- Strong production ⇒ Large cross sections.
- Quite unsensitive to λ (flavour-independent gãq vertex).

Non-diagonal pairs:

- Only $q\bar{q}$ annihilation diagrams (EW + heavy gluino).
- Show sharp transitions with λ (Avoided crossings - mass flips). Example: $\tilde{d}_1 \tilde{d}_6^*$ and $\tilde{d}_3 \tilde{d}_6^*$

BFHK-B: associated squark-neutralino production

[Bozzi, BF, Herrmann, Klasen (2007)]

- Semi-strong production (10⁻¹ fb to 10² fb).
- Quite sensitive to flavour violation (due to the $q\tilde{q}\tilde{\chi}$ vertex).
- \tilde{d}_1 - \tilde{d}_3 mass flip.
- $\tilde{d}_6 \tilde{\chi}_2^0$ cross section decreases with λ (see \tilde{d}_6 strange/bottom content).
- $\tilde{u}_6 \tilde{\chi}_2^0$ cross section increase with λ (see \tilde{u}_6 charm/top content).

0.05

0.1

BFHK-B: gaugino-pair production

- Light gauginos (rather large cross sections).
- Insensitive to flavour violation (sum over all the squark physical states).

[Bozzi, BF, Herrmann, Klasen (2007)]

Outlook

FHK-E: lightest \tilde{u}_1 decays

[BF, Herrmann, Klasen (in prep.)]

- NMFV GMSB scenario: mainly stop \tilde{u}_1 , with a small scharmed component.
- Lightest quark decays mainly into gravitino and top quark.
- At intermediate λ , sizeable charm decay channels.
- Small dependence on λ .

FHK-E: heavier \tilde{u}_6 decays

[BF, Herrmann, Klasen (in prep.)]

- NMFV GMSB scenario (extended λ range shown here).
- \bullet Mainly stop $\tilde{\textit{u}}_{6},$ with a small scharmed component
- Strong dependence on λ .
- Preferred channels: \tilde{G} and \tilde{g} .

Outline

- SUSY models with non-minimal flavour violation
 - Constrained minimal flavour violation
 - Non-minimal flavour violation (NMFV)
 - Tools needed for a complete NMFV study
- Description of XSUSY
 - The XSUSY approach
 - The XSUSY core: cross sections and decay widths
- 3 Examples
 - Simplified NMFV scenario
 - Parameter space analysis
 - Flavour structure analysis
 - Production cross sections
 - Decay widths
- 4 Summary and outlook

- XSUSY is a multipurpose program to study NMFV effects in SUSY models.
 - * Interface with DarkSUSY, FeynHiggs, SPheno and SuSpect.
 - * mSUGRA, GMSB and AMSB scenarios implemented.
 - * Allows for a detailed analysis of the NMFV parameter space.
 - * Allows for a detailed analysis od the squark sector flavour structure.
 - * Contains production cross sections at LO for "all" sparticle pair-production processes.
 - * Contains SUSY particle two-body decays at LO.
- To do list:
 - Next-to-leading order
 - Three-body decays.
 - * Full experimental study

(heavy-flavour tagging efficiencies, detector resolutions, background,...)

- ⇒ complete understanding of flavour violating effects.
- ⇒ proposal of experimental signatures for NMFV SUSY models.

Appendix

Appendix

Minimal flavour violation (in the squark sector)

[Buras, Gambino, Gorbahn, Jager, Silvestrini (2001); D'Ambrosio, Giudice, Isidori, Strumia (2002); Altmannshofer, Buras, Guadagnoli (2007)]

- Flavour-violating terms of the Lagrangian:
 - Rewritten as functions of the Yukawa couplings.
 - * Not set to zero as for cMFV.
 - Flavour structure generated by the Yukawa couplings
 - ≡ different renormalizations of the quark and squark mass matrices.
 - ⇒ Additional flavour violation at the weak scale through RG running.
- The squared squark mass matrices are

$$M_{\tilde{Q}}^2 = \begin{pmatrix} M_{LL,1}^2 & \Delta_{LL}^{12} & \Delta_{LL}^{13} & m_1 \, m_{LR,1} & \Delta_{LR}^{12} & \Delta_{LR}^{13} \\ \Delta_{LL}^{21} & M_{LL,2}^2 & \Delta_{LL}^{23} & \Delta_{RL}^{21} & m_2 \, m_{LR,2} & \Delta_{LR}^{23} \\ \Delta_{LL}^{31} & \Delta_{LL}^{32} & M_{LL,3}^{22} & \Delta_{RL}^{31} & \Delta_{RL}^{32} & m_3 \, m_{LR,3} \\ m_1 \, m_{RL,1} & \Delta_{RL}^{12} & \Delta_{RL}^{12} & \Delta_{RL}^{13} & M_{RR,1}^{2} & \Delta_{RR}^{12} & \Delta_{RR}^{13} \\ \Delta_{LR}^{21} & m_2 \, m_{RL,2} & \Delta_{RL}^{23} & \Delta_{RR}^{21} & M_{RR,2}^{2} & \Delta_{RR}^{23} \\ \Delta_{LR}^{31} & \Delta_{LR}^{32} & m_3 \, m_{RL,3} & \Delta_{RR}^{31} & \Delta_{RR}^{32} & M_{RR,3}^{2} \end{pmatrix}$$

- The off-diagonal elements depend only on the Yukawa couplings.
- The diagonalizing matrices depend only on the CKM matrix.